

II – WORKSHOP OF INORGANIC MASS **SPECTROMETRY - 2017**

Pb-Sr-Nd ISOTOPIC CHARACTERIZATION OF USGS REFERENCE MATERIALS BY TIMS AT CPGeo-USP

G.B. Magdaleno¹, L.A. Petronilho¹, R.A. Silva¹, I.R. Ruiz¹, M. Babinski¹, M.H.B.M. Hollanda¹ and V.T.S. Martins¹ (1) Centro de Pesquisas Geocronológicas (CPGeo) – Instituto de Geociências – USP, 05508-080, São Paulo, Brasil

1. Introduction

Systematic analyses of Pb, Nd and Sr isotopic compositions of USGS Reference Materials (BCR-1 and AGV-1) were carried out at the Geochronological Research Center (CPGeo-USP).

2. Analytical procedures

Rock powder

4. Results

Pb, Sr and Nd isotope standards data from the last 12 months are presented in Figures 3, 4, and 5. The isotopic compositions of USGS reference materials (BCR-1 and AGV-1) obtained during this study and the certified values are presented in Table 2.

4.1. Pb, Sr and Nd isotope standards

3. Mass spectrometry

The measurements were performed either on a Thermo Triton or on Finnigan MAT 262 Thermal Ionization Mass Spectrometers (TIMS) (Figure 2). The mass spectrometry parameters used are listed in Table 1.

Figure 4 - Sr isotope ratios determined on SRM 987 standard during this study.

Figure 5 - Nd isotope ratios determined on JNdi -1 standard during this study

4.2. Reference Material

Table 2 – Data obtained for reference material (AGV-1 and BCR-1) during this study.

Isotope Ratios	This Study	This Study		
	AGV-1			
⁸⁷ Sr/ ⁸⁶ Sr	0.703981 ± 0.000047	n=15 0.703996 \pm 0.000020[5]		
¹⁴³ Nd/ ¹⁴⁴ Nd	0.512782 ± 0.000010	n=15	$0.512784 \pm 0.000018 [5]$	
²⁰⁶ Pb/ ²⁰⁴ Pb	18.931 ± 0.013	n=10	$18.938 \pm 0.003[6]$	
²⁰⁷ Pb/ ²⁰⁴ Pb	15.647 ± 0.019	n=10	$15.650 \pm 0.004 [6]$	
²⁰⁸ Pb/ ²⁰⁴ Pb	38.541 ± 0.062	n=10	$38.554 \pm 0.019[6]$	
	BCR-1			
⁸⁷ Sr/ ⁸⁶ Sr	0.705026 ± 0.000037	n=7	$0.705025 \pm 0.000019 [5]$	
¹⁴³ Nd/ ¹⁴⁴ Nd	0.512628 ± 0.000005	n=15	$0.512629 \pm 0.000014 [5]$	
²⁰⁶ Pb/ ²⁰⁴ Pb	18.791 ± 0.021	n=10	$18.817 \pm 0.005 [6]$	
²⁰⁷ Pb/ ²⁰⁴ Pb	15.627 ± 0.007	n=10	$15.631 \pm 0.004 [6]$	
²⁰⁸ Pb/ ²⁰⁴ Pb	38.689 ± 0.023	n=10	38.720 ± 0.014[6]	

Figure 2 – Mass spectrometers at CPGeo: A- Finnigan MAT 262; B- Thermo Triton

Table 1- Mass spectrometry parameters for Pb, Sr and Nd analyses

Element	Degassed Filament	Load	Temperature of Analysis (°C)	lon Bean Intensity(V)	Normalization - Correction
Sr	Single Ta	0.1M H ₃ PO ₄	1300 - 1500	⁸⁸ Sr-Higher than 1	⁸⁶ Sr/ ⁸⁸ Sr=0.1194 ⁸⁵ Rb/ ⁸⁷ Rb=2.59265 (IEC*)
Nd	Double Re	H ₂ O	1630	¹⁴⁵ Nd-Higher than 1	¹⁴⁶ Nd/ ¹⁴⁴ Nd=0.7219
Pb	Single Re	0.1M H ₃ PO ₄ and Silica gel	1200 - 1300	²⁰⁸ Pb -Higher than 2	External normalization**

* IEC – Interference Element Correction

** Instrumental mass fractionation factor of 0.11 %/amu was applied for external normalization of Pb measurements. This factor was calculated based on the average measurements of NIST SRM 981

5. Conclusions

The Pb, Nd, and Sr isotopic ratios obtained at CPGeo agree with the certified values of the AGV-1 and BCR-1 USGS reference materials within the error. However, Pb average isotopic composition for AGV-1 and BCR-1 show precision (2SD) between 318 and 1617 ppm. These data confirm heterogeneous lead isotope compositions in the first generation of the Reference Materials [5,7,8].

6. References

[1] W. Todt, R.A. Cliff, A. Hanser, and A.W. Hofmann, Geophysical Union, 95, 1996, 429-437.

[2] R.H. Steiger and E. Jager, Earth and Planetary Science Letters, 36, 1977, 359-362.

[3] G.J. Wasserburg, S.B. Jacobsen, D.J. DePaolo, M.T. McCulloch, and T. Wen, Geochimica et Cosmochimica Acta, 45, 1981, 2311–2323.

[4] T. Tanaka. *et al.*, Chemical Geology, 168, 2000, 279–281.

[5] D. Weis, B. Kieffer, C. Maerschalk, J. Barling, J. Jong, G.A. Williams, D. Hanano, W. Pretorius, N.Mattielli, J.S. Scoates, A. Goolaerts, M. Friedman, and J.B. Mahoney, 2006, Geochemistry, Geophysics, Geosystems 7(8), 1-30. [6] T. Kuritani, and E. Nakamura, Chemical Geology 186(1-2), 2002, 31–43.

